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Abstract—Quantum computers are designed based on is Grover's Search (GS) which in proper times is called in
quantum mechanics. They have special features such as this algorithm. In this text, it is shown that by knowing mean
entanglement and parallelism, which do not exist in classic and variance of N elements and using it in quantum
mechanics-based computers. Therefore, quantum algorithms  algorithm of finding minimum, it could reduce search cost.
have their own privilege for solving some problems compare to  In section II, some primal concepts of quantum computations
classic ones such as finding the minimum value of a function in are presented. GS which has an extensive application in most
optimization problems. For instance, finding the minimum of quantum computation has been completely described in
ivelfl?_l ents in qllllanFum r.nefthod :s faste;; thtan]\?laslsnc metthodf. section III. GS application in optimization problems is
n this case, having information ~about [V elements o studied in section IV. In section V, it is shown that by
distribution does not reduce the cost of finding the minimum . . TR L
. . . applying mean and variance of sample's distribution, it is
value in classic method due to linear search of each element. g . S .
possible to reduce the cost of finding minimum. Section VI

But in quantum method, all elements are simultaneously . d of simulati lts of leorith £
considered as well as distribution information, which is related 1§ cqmp os.e. of simulation .resg ts ofa qual}tum a. gorithm o
finding minimum. Conclusion is presented in section VIL.

to the whole elements. This distribution information effectively
influences on finding the minimum value. Numerical

. . . . II.  PRIMAL CONCEPTS OF QUANTUM COMPUTATIONS
simulations show having mean and variance of /V elements can

reduces the cost of minimum finding through quantum method In this section, some primal concepts of quantum
by %40. Furthermore, it is shown the greater variance causes computations are presented [4]. The basic unit of information
less cost. in quantum computing is called qubit, which is the

abbreviation of quantum bit. A bit can be 0 or 1 in a usual

Keywords- optimization; quantum search; adaptive search; . | - lo 1 h
sample distribution; mean; variance. computer. A qubit can also be in | > or | > . Furthermore,
it can take a state called superposition. This state is a linear

I INTRODUCTION o . .
combination of states |O> and |1> . If this state is called

The concept of quantum computers was presented in
early 1980s. These types of computers are like classic |y/> , a superposition is written as:
computers with this difference that their base of working is
quantum mechanics instead of classic one . In late 1980s and

early 1990s, it was shown that quantum computer power in ly)=a|0)+ B [1) (1
solving some specific problems is higher than classic

computers. In 1994, Shor showed that a quantum computer Here a and f are complex numbers such that:

can solve the known problem of “decomposition of an

integer number N to prime factors” in a time order of ‘a‘z +‘ ﬂ‘z =7 ()

polynomial log N. Whereas, for this problem about classic

computers, there is no efficient known algorithm [1]. In

1996, Grover presented an algorithm could find an element Since, a qubit can be a superposition of states |O> and
among N unordered elements with the time order of O(VN).
The equivalent classic algorithm of this action is of order
O(N) [2]. By using this capability, a quantum algorithm for wouldn’t be reached. In fact, when a qubit is measured, only
finding the minimum element between N elements is . .

presented that is of order O(VN) versus time order O(N) of its it can be found in one of the states |O> o |1> - Quantum
equivalent classic algorithm. The main core of this algorithm mechanic laws tell us absolute squares of a and g in (1)

|1> , whenever a measurement to be done, the same result
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would be the probability of finding a qubit in state |O> or

|1> . In other words,

|af* gives us the probability of finding ‘l//> in state |O> .

B> gives us the probability of finding ‘l//> in state |1> .

Because the information unit in quantum computation is
qubit, a range in which quantum computations are located in
mathematical concept is a vector space. This expresses that
quantum states to behave mathematically as same as physics
vectors. Therefore, vector space is applied here. Vectors of
this space often have common fundamental properties of
physics vectors, such as having a length. Showing
information in a vector form of basic states, gives an
important capability to quantum computers. This capability
called quantum parallelism causes quantum algorithms rate
to increase in comparison with other classic algorithms. A
quantum register like an n bit classic register is an array of n
qubits. A quantum system can be manipulated by using
quantum gates. In fact, these gates are unitary matrices that
are imposed on quantum states (vectors). Each quantum
computation consists of three following parts:

1. Preparing a quantum register in an initial well

defined state ‘l//0>.
2. Manipulating the initial state ‘l//0> by using a

sequence of gates until final state ‘l// f> to be
reached.

3. Measuring the final state ‘l// f> .

IIL

Let n be a positive integer number and S={0,1}", such
that the domain length to be N=2". It is supposed
h:S — {0,1}. We wish to find a point €S that h(u)=1.

Also, it is supposed that h is an oracle. It means that
recognition about is just possible by sampling (evaluating) it
and there is no information about its structure.

By classic computations, the logic function 4 can be
implemented as a sub-procedure. For instance, a classic logic
circuit that has taken a sequence of bits as a representative of
a point in S, results in its dependent value of 4. This sub-
procedure can be performed successfully on all points of S
until a considered point to be found. This classic program
needs an average of N/2 evaluations to find a determined p
point.

In quantum computing, the circuit implementing / (using
gates that work with qubits) inputs and outputs
superpositions. Hence, many feasible solutions would be
observed in an instance. On a quantum computer, observing

GROVER QUANTUM SEARCHING ALGORITHM
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the output, changes the output value to a classic bit sequence.
This action is done with respect to a specified probability
distribution by superposition. Thereafter, without a need to
use a loop on N points of S, a quantum computer can work
on a superposition of these N points.

Algorithm(1): Grover quantum search algorithm.

1. Initialize the system to the distribution:

1 1 1 1 . .
—_— ..., , i.e. there is the same
IN'ININT TN
Amplitude for be in each of the N states.
2. Repeat the following unitary operations O(\/ N ) times:
(a) Let the system be in any state S :

In case C(S) =1, rotate the phase by /7 radians;
In case C(S) = 0, leave the system unaltered.

(b) Apply the diffusion transtorm D which is
defined by matrix I as follows:

D. &

2 . 2
= lflij Dii:_l—‘ri
7N N
This diffusion transform, [, can be implemented
as D = WRW ,where R the rotation matrix &
W the Walsh-Hadamard Transform Matrix are
defined as follows:

R, =0 if 1#J];

R, =1if i= 0;

R 1if i#0

w, :2"’/2(—1);'} where 7 is the binary

ii

representation of 7 ,and 1.j denotes the bitwise
dot product of the two 7 bit strings I and j .

3. Sample the resulting state. In case C(S,) =1 there

is a unique state S , such that the final state is S N

with the probability of at least 1 .
2

The set of considered points is represented by
M ={u eS‘h(u):l} and the number of these objective

points is represented z. We may or may not be aware of the
value of ¢ Grover introduced the "Grover's rotation"
operator, which incorporates the oracle for 4 and provides a
means of implementing a certain phase-space rotation of the
states of a quantum system encoding points in the domain S.
By repeating these rotations, it can reach from a state with
equal amplitude state (which is simple to prepare within a
quantum computer) toward the states encoding the unknown
marked points. More details are given in [2, 5, 6]. A Grover
search with » rotations performs » times Grover's rotation
operator on a superposition of those states with the same
domains, then the output is observed.
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Most of the performed operations in implementing
Grover rotation operator is related to requesting from oracle,
so the cost of a Grover search with r rotations is considered
equivalent to the cost of » requests from oracle. The output is
a point of S, and if someone wants to know whether the
resulting output is in M or not, one more request from oracle
(for operating on that point) gives function's value of 4.

Maybe, applied oracle computations in GS seem vague.
From computer science researchers' point of view, an oracle
is just a fictitious mathematical device that permits them to
estimate the computational cost of some algorithms with
respect to "the number of oracle recalls". For GS, it allows
them comparing relative costs of classic unstructured search
and quantum unstructured search with respect to the number
of oracle recalls. During implementing unstructured search
on real problems, oracle, which has an explicit pre-awareness
of solution is replaced with a studying and testing procedure
of a polynomial (or better) order. This studying and testing
procedure recognizes solutions implicitly through properties
which a correct solution should have had. These studying
and testing procedures can be different completely from one
problem to another. So the use of the oracle in GS is really
only a proxy for such a testing procedure in which, we
assume, arbitrarily, that there is a unit cost per call to the
oracle [7].

A. Some points about GS

1) Grover showed [2] if exactly one point is being
considered, in this case, for finding that point, only

7/4\ N rotations are required.

2) Optimality of GS was proven in [8]. It means that any
other quantum algorithms which are being applied for
unstructured search have to perform oracle recall at least
to the times of oracle recall in GS.

3) Implementing this algorithm in contrast to other
quantum algorithms is simpler. Because, Walsh-
Hadamard transformation and conditional phase change
operator are used in it, which implementing them is
simpler to necessary transformations in other algorithms.

4) It is shown that for obtaining to a correct result,

number of GS iterations has to be exactly 7/ 4N [5],

otherwise the probability of finding the correct solution
decreases. In figure (1), the oscillations of GS success
probability by increasing the number of iterations is
shown [7]. This figure is a result of searching an
objective option among 2’ options. As it is observed,
the first high probability of success is reached after

71'/ 4\/2710 ~ 20 iterations of the algorithm and after that

this probability decreases.
5) In quantum unstructured search, if & objective options
are being looked for among N options (k is known), then

GS has to be performed exactly 77/4/N/k times until
reaching success [5]. If k is unknown, but it is known that
k>k,, 7/4\N/k, iterations of GS for reaching the
success is enough.
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Figure 1. The probability of success as a function of the number of

steps of amplitude amplification for a problem having one solution
amongst 2" possibilities.[7]

IV. GS APPLICATION IN GLOBAL OPTIMIZATION

Quantum computing have a high capability for increasing
efficacy of stochastic global optimization methods. GS could
be used for solving a specific optimization problem of
"finding global minimum" [10]. With the assumption of an
objective function f:S — 9% and a point like X e §with

f(X)=Y, improvement region for function f'is defined as:

IR, ={weS: f(w)<Y} A3)

It is trivial that ‘S‘>‘[R f‘ . Therefore, the probability of

finding minimum in an improvement region is more than the
region S.

1 1

5l

4

If a sequence of improvement regions is generated, at last
an improvement region is generated whose members are the
minimum value of function f for generating these
improvement regions, it is possible to use GS. GS needs an
oracle; a quantum circuit which to be able categorizes points
we S from the aspect of belonging to objective set [11].
The logic function (w)=(f(w)<y) would be this oracle. In
fact, 4 is simply a quantum circuit of a black box whose
output at a point w in S (or a hyper state of these points) is
defined as:

1
h(w) =
0 3

; fony <y

(5)
fowy >y
If GS uses above oracle, the output before measurement

is an improvement region and after measurement is a random
point of the improvement region.
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This method is called Grover adaptive search (GAS)
method [6]. At first, the algorithm selects a sample from the
domain uniformly and assesses the objective function at that
point. At each subsequence of iterations, the algorithm
evaluates the objective function at the determined point by
GS. GS uses the best observed function value so far as the
threshold. This algorithm is given as a semi-code here [10]:

Algorithm(2): Grover Adaptive Search (GAS).

1. Generate X, uniformly in §', and set Y, =f(X)-
2. For p =12, ... until a termination condition is met, do:

(a) Perform a Grover search of 7, rotations on f with

threshold ¥ , and denote the outputs by X and ).
O If y<Y ,set X, =x,Y

n+1 = y >
Otherwise,set X |, =X ,
n+ n

Y+I:Yn'

n

GAS is compatible with a developed adaptive search
framework [12, 13, 14, 15, 16]. It has been proven that this
framework is useful for studying convergence theory of
stochastic global optimization methods. Hypothesis of all
adaptive algorithms is that improvement points can be found.
GS can find existing points of an unknown objective set by
an oracle. This capability of GAS is resulted from making an
objective oracle for the current improvement region at every
iteration. In this method, a sequence of domain’s points is
generated that were distributed uniformly in the previous
improvement region. This sequence converges too fast to
global optimum. Actually, all the algorithm work is done in
the last step, when GS is performed by a threshold a little
larger than the global minimum [10].

V.

For finding the minimum element among N numbers in
classic case, if it is known that the minimum point has been
repeated ¢ times through elements, this information doesn’t
have any effect on the cost of finding the minimum. In
quantum case, with the mentioned assumption, the cost of

finding the minimum decreases from O(\/N ) to O(4N /t)

It can conclude that by having general information of
sample, it is possible to decrease search cost. In GAS
algorithm, first, by selecting a random element between N
elements, an objective region is generated. At each of
iterations of GAS, objective region becomes smaller until
this region to have only one element, which is that objective
element. The proposed method in improving the cost of
executing GAS algorithm is that instead of a random
element, an element to be selected that to accelerate the
convergence of objective function toward the objective
elements. For this reason, the mean difference and the
variance are used as the estimations for the minimum
element. According to definition of mean and variance the
primary objective region to the objective region generated
randomly would be smaller. Therefore, the cost of finding

EFFECT OF SAMPLE DISTRIBUTION IN OPTIMIZATION
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minimum will decrease. Since, computing the variance and
mean for applying in finding the minimum increases the
algorithm total cost of finding the minimum, this approach
for problems in which the variance and the mean of samples
are given as the initial data or problem assumptions would be
very effective. This method is called improved Grover
adaptive search (IGAS). Semi-code of this algorithm is as
following in algorithm (3).

Assuming S.,S,... is a sequence of generated
improvement regions by GAS and 7, 75,... is a sequence of
generated improvement regions by IGAS. Because threshold
value Y; in IGAS to GAS is accounted for a better
approximation of the minimum element, so the probability of
finding the minimum in 7; would be higher than S, and the
sequence {7T,} would converge sooner than {S,}.
Consequently, by assumption of having the mean and
variance of N numbers, the cost of finding the minimum of
these N numbers by IGAS method would have less cost than
GAS method.

Algorithm(3): Improved Grover Adaptive Search (IGAS).

L. Set Y, = mean(S)— var(S) -
2. For p=12,... until a termination condition is met, do:

(a) Perform a Grover search of 7, rotations on f with

threshold ¥, , and denote the outputs by X and ) .
OIfy<Y, set X, =x,Y =y,
Otherwise,set X, ., =X .Y =Y.

n

VL

Computer simulation as a method has been accepted in
many science and engineering fields. Today computers can
be applied for simulating relatively small quantum
computers (about 24 qubits). For this reason, nowadays,
quantum computation theoretical ideas cannot be performed
like executed numerical computations on current
supercomputers. Current computers can be an abstract model
of an ideal quantum computer from the simulation aspect.
Moreover, they are able to simulate the hardware physical
functions of a quantum computer [17].

In order to simulate a quantum multi-part system while
the parts have interactions with each other, problems will
grow exponentially alongside the growing quantum system.
This has been clearly obvious in quantum  statistical
mechanics and also quantum chemistry. In fact, this
phenomenon imposed a question for Feynman that what kind
of computer is required to prevail over exponential growth?
He concluded that only a quantum computer can simulate
itself thoroughly [18]. Therefore, most of the performed
simulation on the theoretical studies or even implementation
emphasize the small scales [19-24], since the purpose is
presenting the potentials and capabilities of quantum
computations.

NUMERICAL SIMULATION
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In GS based algorithms, the cost of an algorithm is
determined with the number of GS’s rotations. Since GS is
the main core of the quantum algorithm for finding the
minimum, without a quantum computer only by using a
classic computer and also considering the number of
rotations, it is possible to obtain the cost of executing the
algorithm. Therefore, in order to compare two methods GAS
and IGAS for finding the minimum, the number of rotations
in each method is required. In this case, the number of
rotations has been obtained by numerical simulation with
MATLARB on a classic computer.

A. Simulation results

1) Simulating by a fixed sample

A random sample of N=2" (n is the number of qubits and
2<n<12) with normal distribution N(0, 1) is generated and
GAS and IGAS algorithms for finding the minimum on
this sample are executed for 100 times. The search cost
for every algorithm is considered the number of rotations
done for finding the minimum. The average number of
required rotations for finding the quantum minimum is
given in figure 2.

2) Simulating with different samples

GAS and IGAS algorithms are performed 100 times on
samples having N=2" (n is the number of qubits and
2<n<I2) generated elements of normal distribution
N(0,1). The average number of required rotations for
finding the quantum minimum is represented as the
average cost of GAS and IGAS algorithm separately in
figure 3.

As the figures 2 and 3 show, on average the number of
rotations in IGAS is %40 less than GAS. In another word,
the cost of finding the minimum with IGAS algorithm is
about %40 less than GAS algorithm's.

3) Simulating with constant mean and variable variance
N=1024 random numbers with normal distribution of
mean 0 and variance between 0, 1 to 2 are generated for
1000 times and GAS, and IGAS algorithms are performed
on them in order to find the minimum, which the results
are given in figure 4.

VII. CONCLUSIONS

GS time order is O(VN) by using this algorithm,
especially in finding the minimum. GAS is one of the
quantum algorithms for finding the minimum applies GS as
the main core. The proposed IGAS algorithm uses the
difference of mean and variance instead of selecting the
threshold element randomly. IGAS to GAS spends less cost
to find the minimum in the first step, because in the first step,
its objective set would be smaller than GAS's which it leads
to accelerate converging to the minimum element to GAS.
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Figure 2. Comparing the average cost of finding the minimum element
among N constant element of GAS and IGAS.
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Figure 3. Comparing the average cost of finding the minimum element
among N elements of GAS and IGAS.
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Figure 4. Comparing the average cost of GAS and IGAS for N=1024
elements with constant mean and variable variance.

Numerical simulations show that the cost is decreased
around %40 of GAS's cost. This result confirms the proposed
idea in IGAS for improving the cost of performing the
algorithm of finding the quantum minimum.

In addition, it is observed that more dispersions of
elements (larger variance), less cost in finding the minimum
by IGAS, whereas, this dispersion has no effect on finding
the minimum by GAS. Unlike, classic algorithms that the
searched being sample distribution don't affect on the cost of
finding the minimum, by using the quantum algorithms and
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sample distribution characteristics, it can decrease the search
cost of finding the minimum which is important in
optimization problems.

Applying IGAS algorithm is not sufficient while mean
and variance are not available since computing the mean and
variance are costly. While data are too much, IGSA
algorithm can be applied by using statistical sampling
methods and estimating mean and variance. Determining the
efficiency and improvement of IGAS algorithm can be
considered in the future. Moreover, because the normal
distribution of mean 0 has been used in simulations, the
question about the effect of sample distribution type can be
studied in later works.
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